MICRO AND NANO MANUFACTURING

CourseCode		Year		Semester	
Course Category	HONORS	Branch	ME	Course Type	Theory
Credits	3	L-T-P	3-0-0	Pre requisites	MSM,MP
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes: Upon successful completion of the course, the student will be able to

	Statement	Skill	BTL	Units
CO1	Understand manufacturing considerations at the micro	Understand	L2	1 2 2 4 5
	and nano scale.	Communication	L2	1,2,3,4,5
CO2	Create and characterize nanostructures for a particular	Apply,	L3	2
	industrial application	Communication	L3	2
CO3	Select appropriate manufacturing methods to create	Apply,	L3	3,4
	micro sized components	Communication	L3	3,4
CO4	Design and select industrially-viable processes,	Apply		
	equipment and manufacturing tools for specific	Apply, Communication	L3	5
	industrial products.	Communication		

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	3				2				2	2
CO ₂	2	2	2	3	2				2				2	2
CO3	3	2	2	2	3				2				2	3
CO4	3	3	3	2	3				2				2	3

Syllabus					
UNIT	Contents	Mapped COs			
I	Introduction: Importance of Nano-technology, Emergence of Nanotechnology, Bottom-up and Top-down approaches, challenges in Nanotechnology. Nano materials Synthesis and Processing: Methods for creating Nanostructures; Processes for producing ultra-fine powders: - Mechanical grinding; Wet Chemical Synthesis of nanomaterials - sol-gel process, Liquid solid reactions; Gas Phase synthesis of nanomaterials- Furnace, Flame assisted ultrasonic spray pyrolysis; Gas Condensation Processing (GPC), Chemical Vapour Condensation (CVC)- Cold Plasma Methods, Laser ablation, Vapour - liquid -solid growth, particle precipitation aided CVD, a summary of Gas Condensation Processing (GPC). Structural Characterization: X-ray diffraction, Small-angle X-ray	CO1			
	Scattering, Optical microscopes and their description, Scanning Electron				

	Microscopy (SEM), Scanning Probe Microscopy (SPM), TEM and EDAX analysis, Scanning Tunneling Microscopy (STM), Atomic force microscopy (AFM).	CO1, CO2
Ш	Microfabrication Techniques: Lithography, Thin Film Deposition and Doping, Etching and Substrate Removal, Substrate Bonding. MEMS Fabrication Techniques, Bulk Micromachining: Processes used for shaping and sizing of micro products and macro products and Nano finishing techniques, Surface Micromachining, High- Aspect-Ratio Micromachining.	CO1, CO3
IV	Nanofabrication Techniques: E-Beam and Nano-Imprint Fabrication, Epitaxy and Strain Engineering, Scanned Probe Techniques, Self-Assembly, and Template Manufacturing. MEMS devices and applications: Pressure sensor, an inertial sensor, Optical MEMS and RFMEMS, Micro-actuators for dual-stage servo systems.	CO1, CO3
v	Applications of Nano and Micromachining in Industry, Typical machining methods: Micro-turning, Micro-drilling and Micro-milling, Product quality in micromachining Micro-grinding and Ultra-precision Processes : Introduction, Micro and Nano grinding, Nano grinding tools Applications in optical manufacturing, Semiconductor and electronics related applications.	CO1, CO4

Learning Resources

Text books

- 1. Tai-Ran Hsu, "MEMS and Microsystems: Design and Manufacture," McGraw-Hill, 2008.
- 2.V. K. Jain, "Introduction to Micromachining", 2nd Edition, Alpha Science, 2014.
 - 3. Mark James Jackson, "Microfabrication and Nanomanufacturing", CRC Press, 2005.

Reference books

- 1. J. A. Collins, Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention, 2/3, John Wiley & Sons, 1993
- E- Resources & other digital material
 - 1.https://nptel.ac.in/courses/102108078